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Abstract

Recent advances in diffusion models have demonstrated im-
pressive capabilities in conditional image generation, par-
ticularly when guided by structured modalities such as
depth maps. In this work, we explore the limits of condition-
ing diffusion models using monocular depth maps without
relying on extensive scene diversity in training data. Build-
ing on the ControlNet framework, we compare generation
quality using two datasets: the diverse SUN RGB-D and
a custom-collected, environment-specific dataset from the
Bahen Centre for Information Technology using an Azure
Kinect DK ToF camera. We introduce a robust depth
preprocessing pipeline—including non-local means filter-
ing—to normalize dataset quality and ensure a fair compar-
ison. Through empirical evaluation using FID, LPIPS, and
a depth adherence metric, we characterize the lower bounds
of scene diversity necessary for effective depth-based con-
ditioning. Our findings suggest that even with constrained
scene variety, conditional diffusion can yield high-fidelity,
depth-consistent generations, paving the way for more ac-
cessible depth-conditioned generative systems.

1. Introduction

1.1. Problem
Diffusion models [29] [31] [13] [32] have emerged as qual-
itatively and quantitatively successful methods for training
generative models by predicting noise we add to a train-
ing sample through a series of discrete steps, or a score
function [15], the gradient of log-likelihoods at continuous
timesteps. This training procedure gave way to simple ex-
tensions that facilitate precise yet diverse conditional sam-
pling; we can train conditional and unconditional models
with the goal of fusing samples from both models at infer-
ence time during denoising, thereby creating a strong con-
ditioning mechanism while preventing mode collapse.

Although these models tend to be used for conditioning
on textual information, the authors of ControlNet [38] show
impressive results for conditioning on several text and im-

Figure 1. Results taken from the ControlNet paper for condition-
ing on Canny edge detections

age modalities. One example, shown in Figure 1, is the
result of conditioning on Canny edge detections [5], which
functions as an excellent method to sample images guided
by input human-drawn sketches. There are also results for
conditioning on data that is much more expensive to obtain,
such as depth map and image pairs.

1.2. Our hypothesis
The relationship between images and depth maps is an am-
biguous one. That is, given an image, one can produce sev-
eral reasonable depth maps, and vice versa. For most ap-
plications, this is obviously problematic, but we postulate
that it may work to our advantage in the case of conditional
generative modeling; it should be possible to get a general
sense of depth without image and depth map pairs from a
wide variety of environments (roads, parks, living rooms,
etc.). We find this likely since, although a model might not



Figure 2. FID, sFID, and IS as a function of gradient scale w
(taken from the classifier-free guidance paper)

see a depth map of a car, a clever enough sampler should be
able to extrapolate a reasonable image from a conditional
model’s notation of depth if it is grounded by an uncondi-
tional model trained on plenty of car images. So, in this
work, we provide a foundation for empirically characteriz-
ing a lower bound on the data diversity needed to condition
ControlNet on monocular depth maps represented in image
form.

2. Related Work

2.1. Conditional Generation

ControlNet was not the first paper to introduce the idea
of conditing image generation on depth maps. Early on
there were several attempts at learning conditional image
gernation, including, but not limited to, Atribute2Image
[36] which explored conditioning varational autoencoders
(VAEs) [18] on visual attributes, PixelCCN [33] for image
generation given a few words, and models such as Star-
GAN [6] or ContraGAN [17], generative adversarial net-
works (GANs) [10] for image manipulation or full genera-
tion given one-hot-encoded lables. While conditional image
generation remained a challenging task for other generative
modeling frameworks, diffusion models exploded in pop-
ularity, in large part due to the successes of classifier and
classifier-free guidance [12] [8].

2.2. Diffusion-Based Conditional Generation

Some of the original diffusion papers, such as Denoising
Diffusion Probabilistic Models [14], included results for
control over color variation and image inpainting. Fur-
ther work included conditioning on text such as CLIP la-
tents [23] [22], conditioning on segmentation masks [9] [1],
subject-driven generation [26], conditioning on sketches
[34], and more general approaches aimed at a wide variety
conditional data [2].

Figure 3. ControlNet architecture with a Stable Diffusion U-Net
backbone (taken from the ControlNet paper)

3. Background

3.1. Denoising Diffusion Probabilistic Models
The formulation of diffusion we focus on is Denoising
Diffusion Probabilistic Models (DDPMs) [14], which be-
long to a class of generative models whose sampling pro-
cess involves moving backwards through a finite first-order
Markov chain starting from an equilibrium that is tractable
to sample from. The forward process is defined as

q(xt|xt−1) = N (
√
1− βtxt−1, βtI) (1)

for which we also have direct sampling given x0:

q(xt|x0) = N (
√
αtx0, (1− αt)I) (2)

with αt = 1 − βt and αt =
∏t

i=1 αt. This process is
repeated for T steps, and we choose {βt}Tt=1 so that equi-
librium xT is approximately element-wise standard normal.
Using (2) with the reparameterization trick, we can write

x0 = 1√
αt

(
xt −

√
1− αtϵ

)
(3)



Figure 4. Hardware setup: left - Bahen, middle - Azure Kinect DK, right - Canakit Raspberry Pi 4

for ϵ ∼ N(0, I), helping us show the mean of the reverse
posterior q(xt−1|xt, x0) is

µ(xt, t) =
1√
αt

(
xt −

1− αt√
1− αt

ϵ

)
(4)

So, we train a neural network to predict

ϵθ(xt, t) ≈ ϵ (5)

and repeatedly sample xt−1 as µ (4) with varying amounts
of additive Gaussian noise σtz until we reach x0:

xt−1 = µ(xt, t) + σtz (6)

With the success of this method came many subsequent
alterations, such as reasoning about more suitable forward
coefficients [21], accelerating the backward process [30],
and performing the diffusion process in a latent space [24].

3.2. Classifier-Free Guidance
Conditioning. Classifier-free guidance (CFG) [12] builds
on classifier guidance [8], a method to train conditional dif-
fusion models using a separate classifier trained at the same
time. In classifier-free guidance, we train a diffusion model
to always condition on label y, as in ϵθ(xt, t, y), but we ran-
domly drop this label, replacing it as some null label y = ∅;
this gives us one model that can be sampled from both con-
ditionally and unconditionally. Now, by Bayes’ rule,

∇xt
log p(xt−1|xt, y) = ∇xt

log(xt|xt−1)+∇xt
log(y|xt−1)

(7)
which we can use to show we need to add the gradient of
some classifier’s log probability to (4) to achieve condi-
tional sampling:

µcond(xt, t) = µ(xt, t) + σ2
t ∇xt

log p(y|xt) (8)

Since the score function ∇xt
log q(xt) is equal to

−ϵθ(x,t)/
√
1− α̂t [14], we can substitute this value into

(7) to yield

∇xt
log p(xt−1|xt, y) = −ϵθ(x,t, y)− ϵθ(x,t,∅)√

1− α̂t

(9)

At sampling time, we use this identity (9) to end up with

ϵcond(xt, t, y) = ϵθ(x,t, y)−
√
1− α̂t∇xt

log(y|xt−1)

= 2ϵθ(xt, t, y)− ϵθ(xt, t,∅)
(10)

Controlling the amount of conditioning. We can take
a barycentric combination of the conditional and uncondi-
tional score functions to get

ϵguided(xt, t, y) = ϵθ(x,t, y)− w
√

1− α̂t∇xt log(y|xt−1)

= (w + 1)ϵθ(xt, t, y)− wϵθ(xt, t,∅)
(11)

where w controls the level of conditioning; w = 0 be-
ing unconditional, w = 1 being conditional (matching
(10)), partial conditioning in-between, and w > 1 ”super-
conditioning”. Figure 2 shows how varying w changes FID
scores [11], sFID scores [20], and inception scores [27]
(even though we should care more about FID [3]).

3.3. ControlNet
Let y = Fθ(x) be the output of a neural network (or block)
F with input x, such as Fθ = ϵθ and x = (xt, t) in the
case of (5). To transition to training a conditional generation
model given a pre-trained unconditional model F , we clone
the parameters θ into θ1, θ2 where θ1 is frozen and θ2 we
fine-tune. Call the output conditioned on c

yc = Fθ1(x) + Fθ2(x+ c) (12)

Since this setup can be highly sensitive to noise for the first
few gradient descent steps, we instead use

yc = Fθ1(x) + Zθz2(Fθ2(x+ Zθz1(c))) (13)



Figure 5. Raw SUN RGB-D pairs

Figure 6. SUN RGB-D thresholding

Metric SUN RGB-D Bahen

completeness 84.4895 99.9898
depth range 0.2974 0.3765
entropy 4.0826 3.6904
noise level 0.0082 0.0051
size (# images) 10334 10020

Table 1. Comparison of depth map quality metrics between raw
SUN RGB-D and our raw Bahen dataset

where Z are zero convolutions, 1 × 1 convolutions with
weights and biases initialized to zero; θz1, θz2 = 0. Intu-
itively, this setup leads to more stable initial training dy-
namics than (12) since we begin with yc = y without losing
rich feature extraction given by θ2. Lastly, instead of apply-
ing this augmentation to an entire network, we apply it to
blocks of a network, such as each up and down block in a
Stable Diffusion [24] U-Net [25], shown in Figure 3.

3.4. Non-Local Means
The Non-Local Means (NLM) algorithm [4] represents a
significant departure from traditional local neighborhood
filtering approaches for image denoising. Unlike conven-
tional methods that operate on spatially adjacent pixels,
NLM exploits the inherent redundancy in natural images
by leveraging similarities between patches throughout the
entire image domain, which is incredibly useful for our

Figure 7. Raw Bahen dataset pairs

Figure 8. Bahen dataset non-local means

depth map processing pipeline. Given a noisy image v, the
NLM algorithm estimates the denoised value at pixel i as a
weighted average

NLM(v)(i) =
∑
j∈I

w(i, j)v(j) (14)

where weights w(i, j) measure the similarity between
patches centered at pixels i and j, defined as:

w(i, j) =
1

Z(i)
exp

(
−
∥Pi − Pj∥22,a

h2

)
(15)

Here, Pi and Pj represent patches centered at pixels i
and j respectively, ∥ ·∥2,a denotes a Gaussian-weighted Eu-
clidean distance, h is a filter strength parameter controlling
the decay of the exponential function, and Z(i) is a normal-
izing constant ensuring

∑
j w(i, j) = 1.

4. Experiments
4.1. Overview
For our experiments, since we want to compare genera-
tion for training data from diverse scenes versus limited
scenes, we chose to use one off-the-shelf diverse dataset
and collect our own semi-scene-specific one. For the di-
verse dataset, we selected the SUN RGB-D dataset from
Princeton [40], which contains RGB-d images from NYU
depth v2 [28], Berkeley B3DO [16], and SUN3D [35]. For



Figure 9. Good generations with w = 0.8 (including their Depth Anything depth map predictions)

our own dataset, we collect RGB and depth map pairs using
an Azure Kinect DK [19]. We focus on two key principles
we must follow for a fair comparison:
1. The datasets are of the same quality (particularly the

depth maps)
2. Metrics should focus on conditional generation quality

while also characterizing samples’ diversity and adher-
ence to depth maps
For our experiments, we chose to fine-tune a Stable Dif-

fusion 1.5 backbone on both datasets using a ControlNet
setup.

4.2. Experimental Setup
Hardware setup. The device we used to capture image
and depth map pairs is an Azure Kinect DK, which uses
a 12MP CMOS sensor with rolling shutter for RGB cap-
tures and a 1MP Time-of-Flight (ToF) sensor for depth. On
top of depth, the device also has the ability to capture au-
dio, accelerometer and gyroscopic data, but we only in-
clude experimental results for conditioning exclusively on
depth. To interface with the Kinect, we use a Canakit Rasp-
berry Pi 4 running the latest version of Ubuntu. Since the Pi
uses an ARM instruction set and not x86, we compiled the
Kinect libraries from scratch, installing necessary drivers
along the way. To capture single recordings, we wrote a
Python script to save one-second recordings in a Microsoft-
defined mkv format using k4arecorder then extracted the
first non-corrupt frame pair to two png files using PyK4a.

Data collection. To collect data from a single environ-
ment, we chose to scan sections of the Bahen Centre for
Information Technology at the University of Toronto St.
George campus since it has several floors with differing
styles, but it does not seem nearly as diverse as the im-
ages in SUN RGB-D. Since SUN RGB-D contains approxi-

mately ten thousand images, we collected the same number
in Bahen in approximately 4 hours of scanning. For both
datasets, we leave prompts blank and condition on depth
alone. The raw SUN RGB-D (diverse) and Bahen (limited)
datasets are depicted in Figures 5 and 7. All images and
depth maps are later downsampled to 512× 512 resolution.

Datasets comparison. Since hardware is not consistent
across our two datasets, we need to ensure the two sets of
depth maps are of the same quality. Table 1 shows this
comparison where completeness is the percentage of pixels
that are not nan (sensor read a value), depth range is aver-
age depth range per map after globally normalizing (across
the whole dataset) to [0, 1], entropy is the entropy of both
dataset’s distributions approximated as 256 bin histograms,
and noise level is the average standard deviation over all
5× 5 patches in each image (with stride 5).

To ensure similar quality, we force completeness to 100,
tune the other metrics to be equal, and sanity check the re-
sults qualitatively. For SUN RGB-D, this involved a sim-
ple thresholding procedure: normalizing all depth maps to
[0, 1], interpolating all values larger than 0.8, then unnor-
malizing back. The results of this processing are shown
in Figure 6. For our Bahen dataset, this process was more
involved: we used five consecutive iterations of non-local
means with a gradient threshold of 10, outlier threshold of
15, filter strength of 15, template window size of 5, and
search window size of 25. Then, we interpolated outliers
(difference threshold of 100) in each 3× 3 area to eliminate
remaining fragmented salt and pepper noise. The results of
this process are shown in Figure 8.

4.3. Training Setup
Both models were trained using a batch size of 4, one
gradient accumulation step, a learning rate of 1 × 10−5,



Figure 10. Bad generations with w = 0.65 (including their Depth Anything depth map predictions)

Metric Diverse Limited

FID 11.34 9.782
LPIPS 0.1400 0.1536
Depth Adherence 45.67 61.28

Table 2. Comparison of depth map quality metrics between raw
SUN RGB-D and our raw Bahen dataset

and mixed fp16 precision. We trained both models for
∼ 250, 000 gradient descent steps on a single RTX6000
each, which took over a day.

4.4. Results and Discussion
Depth adherence. To compute adherence to depth maps,
we decided to feed final samples through Depth Anything
[37], an image to depth map foundational model, then cal-
culate the squared error between the output and the original
depth map we conditioned on. To test this, we create a third
depth map and image pairs dataset composed of 1000 Ima-
geNet [7] images along with their Depth Anything predic-
tions.

Generation quality. Instead of only computing FID
scores [11] on a test set for each dataset, which is com-
mon for unconditional models, we also report learned per-
ceptual image patch similarity (LPIPS) [39] to measure out-
of-distribution generation quality using the same ImageNet

dataset as our depth adherence metric.

Final results. The scores we end up with are shown in
Table 2 where sampling is performed using w = 1 with
(11). The diverse model trained on SUN RGB-D beats out
our limited model trained on the Bahen dataset in terms of
LPIPS, but surprisingly comes up short in terms of FID.
Figures 9 and 10 show cherry-picked samples from both
models. Figure 9 shows the highest quality generations we
could find where the ground truth is taken from an unseen
scene in Bahen. Figure 10 shows one of the worst genera-
tions we could find where neither model came even close to
handling one particular out-of-distribution depth map.

4.5. Limitations

Our experiments had several clear limitations such as

1. Dataset size: typical depth ControlNet dataset sizes use
at least 100,000 images, ten times the number of ours

2. Only using two datasets instead of a breadth of datasets
ranging from extremely limited to very diverse

3. The difficulty of quantifying depth diversity
4. Lack of experiments conducted on different ControlNet

backbones: we only use the Stable Diffusion 1.5 U-Net

Lastly, if we were to redo our experiments, we would
consider revamping our hardware setup, such as using a ToF
sensor with a larger range or a gyroscope to stabilize hand-
held RGB captures.



5. Conclusion
In this work, we explored the feasibility of condition-
ing diffusion-based generative models on monocular depth
maps without relying on extensive data diversity. Using
ControlNet atop a Stable Diffusion 1.5 backbone, we em-
pirically compared generation quality between models fine-
tuned on a highly diverse dataset (SUN RGB-D) and a
constrained, scene-limited dataset collected from Bahen.
Despite the limited scene variety, the Bahen-conditioned
model exhibited comparable—and in some metrics, su-
perior—performance, particularly in depth adherence and
FID. These findings support our initial hypothesis: depth
maps, even when sourced from a restricted setting, can pro-
vide a sufficiently expressive conditioning signal for diffu-
sion models to generate coherent and diverse imagery us-
ing only a pre-trained unconditional model. This suggests
a promising path for efficient conditional generation using
low-cost, domain-specific data, with potential for broader
application in contexts where large-scale data collection is
impractical. We are particularly excited by the implications
this direction holds for the feasibility of conditional video
generation models.
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