- Published on
Diffusion Papers Reading List
- Authors
- Name
- Alex Rosen
An incomplete reading list of diffusion models papers
Useful things to know:
- Entropy: https://en.wikipedia.org/wiki/Entropy_(information_theory)
- ELBO: https://en.wikipedia.org/wiki/Evidence_lower_bound
- Fourier transform: https://en.wikipedia.org/wiki/Fourier_transform
- Learning in the fourier domain: https://arxiv.org/pdf/2006.10739
- Score functions: https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf
Fundamental papers
- DDPM: https://arxiv.org/pdf/2006.11239
- Improving DDPM schedules: https://arxiv.org/pdf/2102.09672
- DDIM: Faster + deterministic (ish) sampler for DDPM: https://arxiv.org/pdf/2010.02502
- Classifier guidance: https://arxiv.org/pdf/2105.05233
- Classifier-free guidance: https://arxiv.org/pdf/2207.12598
- Score-based methods: https://arxiv.org/pdf/2011.13456
- Denoising in a latent space: https://arxiv.org/pdf/2112.10752
Building off of the fundamental papers:
- ControlNet (condition on different stuff): https://arxiv.org/pdf/2302.05543
- Sampling visual anagrams: https://arxiv.org/pdf/2311.17919
- Solving linear inverse problems: https://arxiv.org/pdf/2201.11793
- Solving non-linear inverse problems: https://arxiv.org/pdf/2209.14687
- Learning clean distributions from noisy data: https://arxiv.org/pdf/2305.19256
- Generative image dynamics: https://arxiv.org/pdf/2309.07906
- Text to shape images with constraints: https://arxiv.org/pdf/2503.14720
Generalizations:
- Sample with any equilibrium: https://arxiv.org/pdf/2208.09392
- Score-based deblurring: https://arxiv.org/pdf/2206.13397